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Abstract

The collection of papers in this journal supplement provides insight into the association of various 

covariates with concentrations of biochemical indicators of diet and nutrition (biomarkers), beyond 

age, race and sex using linear regression. We studied 10 specific sociodemographic and lifestyle 

covariates in combination with 29 biomarkers from NHANES 2003–2006 for persons ≥20 y. The 

covariates were organized into 2 chunks, sociodemographic (age, sex, race-ethnicity, education, 

and income) and lifestyle (dietary supplement use, smoking, alcohol consumption, BMI, and 

physical activity) and fit in hierarchical fashion using each chunk or set of related variables to 

determine how covariates, jointly, are related to biomarker concentrations. In contrast to many 

regression modeling applications, all variables were retained in a full regression model regardless 

of statistical significance to preserve the interpretation of the statistical properties of beta 
coefficients, P-values and CI, and to keep the interpretation consistent across a set of biomarkers. 

The variables were pre-selected prior to data analysis and the data analysis plan was designed at 

the outset to minimize the reporting of false positive findings by limiting the amount of 

preliminary hypothesis testing. While we generally found that demographic differences seen in 

biomarkers were over- or under-estimated when ignoring other key covariates, the demographic 

differences generally remained statistically significant after adjusting for sociodemographic and 

lifestyle variables. These papers are intended to provide a foundation to researchers to help them 

generate hypotheses for future studies or data analyses and/or develop predictive regression 

models using the wealth of NHANES data.

INTRODUCTION

A vast amount of data is collected on each sampled person in the continuous NHANES 

survey, providing a unique opportunity to assess and describe the nutritional status of the US 
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population. However, NHANES cannot assess cause and effect. The variables collected in 

observational studies, such as NHANES, have not been experimentally manipulated and/or 

randomly assigned. In this setting any causal pathway becomes obfuscated and differences 

may provide little insight into the cause and effect. Observational studies, however, can still 

provide an approximate description of patterns in the data and form a basis to estimate 

associations and perform hypothesis testing after controlling simultaneously for many 

variables, though estimates may always be biased due to residual or unmeasured 

confounding.

Application of any statistical method first requires a well-formulated problem within the 

scope of the study design’s ability to provide solutions. Adhering to the tenets of the 

scientific method should precede any statistical analysis. While the basic assumptions of the 

statistical method remain important, uncritical application and/or repeated application of a 

statistical modeling analysis without a well-formulated plan can simply capitalize on the 

random variation and lead to a model that has little utility for prediction, statistical 

estimation or testing, and rather leads to false positive findings (1, 2, 3).

One of the hallmarks of the scientific method is a “feedback loop” between theory and 

practice as we further refine our hypotheses after accumulating new facts (4). NHANES can 

be used to inform the feedback loop by providing a description of the nutritional status of 

the US population by various demographic, socioeconomic, health, and risk markers; and 

with its continuous design, the snapshots reflect changes in the nutritional status of the US 

population. This information can be used to develop modified hypotheses to further 

understand the reasons for observed differences and to identify important factors to consider 

when designing new experimental studies. The collection of papers in this journal 

supplement provides a systematic description of various biochemical indicators of diet and 

nutrition using the same sets of pre-defined covariates. These go beyond age, sex, and race-

ethnicity, which have already been described in the CDC’s Second National Report on 
Biochemical Indicators of Diet and Nutrition in the US Population (5). The main objective 

of this paper is to discuss the statistical strategy used to analyze the 10 selected 

sociodemographic and lifestyle correlates of nutritional biomarker concentrations belonging 

to different classes of nutrients and the reasons for limiting data-driven decisions commonly 

applied in many other NHANES analyses. A secondary objective was to summarize 

parameters from the model results presented in the accompanying papers to identify any 

general patterns.

SUBJECTS AND METHODS

Biomarkers

The dependent variables in the papers in this journal supplement include biomarkers of diet 

and nutrition measured in adults ≥20 y who provided a biological specimen during their 

examination at the mobile examination center in NHANES 2003–2006. Some biomarkers 

were only available for a subset of the full sample or for only 2 of the 4 survey years, i.e. 1 

cycle (Table 1). It is known that a log transformation of data derived from biological assays 

can often be used to make the distribution of the data approximately normal. Previous 

analysis of NHANES biomarker data (5, 6) used simple graphical methods such as normal 
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probability plots and histograms to confirm the adequacy of a natural log transformation for 

the biomarkers presented. The natural log transformation was used for all the biomarkers 

considered in this study, with the exception of vitamin C, 25-hydroxyvitamin D, and body 

iron. The use of the logarithm in linear regression provides a straightforward interpretation 

of the response that is not in the units of the original response variable, but as a percent 

change. Thus, one can compute the percent change in response at 2 different values of a 

covariate, while holding all others constant (see Supplemental Text 1). In addition, with the 

aid of the Taylor series approximation, ln (x+1) ≈ x for small x, the beta coefficient 

(multiplied by 100) from the multiple linear regression of a natural log transformed response 

can be approximately interpreted as the percent change in the response for a 1 unit change in 

the covariate (assuming the covariate has not been transformed), while holding all other 

variables constant (see Supplemental Text 2 for an example). Similarly, if both the response 

and the covariate have been transformed by the natural log, one can approximately interpret 

the beta coefficient as the percent change in the response for every 1 percent change in the 

covariate.

Composite variables are often used in public health messaging and the scientific literature. 

For fat soluble biomarkers, the following composite variables were created by summing a 

group of chemically related compounds: carotenes, xanthophylls, saturated, 

monounsaturated, polyunsaturated, and total fatty acids. These composite variables were 

only calculated for persons who had non-missing values across all corresponding 

biomarkers. Therefore, a small number of values were missing for these composite variables 

relative to the individual biomarkers (see Supplemental Table 1).

Covariates

Ten specific sociodemographic and lifestyle factors were selected as covariates based on the 

information available in NHANES and on evidence in the literature that these variables may 

be related to nutritional biomarkers. The sociodemographic variables included age, sex, 

race-ethnicity, education level, and family poverty income ratio (PIR4). For bivariate 

analyses, we categorized the sociodemographic variables as follows: age (20–39 y, 40–59 y, 

and ≥60 y); race-ethnicity (Mexican American [MA], non-Hispanic black [NHB], and non-

Hispanic white [NHW]); education (<high school, high school, and >high school); PIR was 

calculated by dividing total family income by the poverty guidelines adjusted for family size 

at year of interview (7) and categorized as low (0–1.85), medium (>1.85–3.5), or high 

(>3.5), using the 1.85 cutoff that corresponds to income-eligible for the Special 

Supplemental Program for Women, Infants, and Children (8). The lifestyle factors included 

dietary supplement use, smoking, alcohol consumption, BMI, and physical activity level. 

Participants were categorized as “smokers” if their serum cotinine concentration was >10 

µg/L (9). For descriptive tables, BMI (kg/m2) was categorized using WHO guidelines for 

underweight (<18.5), normal (18.5–<25), overweight (25–<30) and obese (≥30) (10). 

Assessment of supplement use was based on whether the participant indicated any use of 

dietary supplements in last 30 d.

4Abbreviations used: MA, Mexican American; MET, metabolic equivalent task; NHB, non-Hispanic black; NHW, non-Hispanic 
white; PIR, poverty income ratio
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The physical activity variable was constructed using files that provide detailed information 

about specific leisure time physical activities (11). Participants were asked to recall the 

frequency, duration, type and intensity of each leisure time physical activity for which they 

engaged for more than 10 min during the past 30 d. To construct a physical activity variable 

that accounts for energy expenditure, the metabolic equivalent task (MET) score for each 

leisure time physical activity was multiplied by the frequency and duration (min). This 

variable was then summed for each participant, divided by 30 and then multiplied by 7 to 

obtain total MET-min/wk. For the descriptive tables, this variable was categorized into 4 

groups: no reported leisure time physical activity, 0–<500, 500–<1000, and ≥1000 MET-

min/wk (12).

Average daily alcohol consumption was derived from the alcohol use questionnaire as: 

[(quantity × frequency) / 365.25]. Respondents were asked about their alcohol use where a 

drink was defined as a 12 oz. beer, a 5 oz. glass of wine, or 1.5 oz of liquor. This is 

equivalent to a “standard” drink in the United States, which contains 0.6 US fluid oz (18 

mL) of alcohol and corresponds to 14.2 g of ethanol. Persons who reported having less than 

12 drinks of any type of alcoholic beverage in the past year (or lifetime) were considered 

nondrinkers. For descriptive purposes, alcohol consumption was categorized in the following 

groups: no drinks, <1, 1–<2, and ≥2 drinks/d.

In a few cases additional variables were added to the full model (sociodemographic and 

lifestyle factors) to provide important adjustments that might be expected for certain 

biomarkers. For the urine biomarkers, urine creatinine concentration was included as a 

covariate to adjust for the dilution of the spot urine. For fat-soluble nutrients, total 

cholesterol and prescription use of lipid-altering drugs was included because some fat-

soluble nutrients are transported in the plasma by lipids and to adjust for drug-related 

changes in fat absorption and/or lipid metabolism. For 25-hydroxyvitamin D, season and 

latitude were included as proxies to adjust for sun exposure, which has been shown to have 

an impact on vitamin D status.

The mathematical form of the continuous covariates (age, PIR, BMI, physical activity, and 

alcohol consumption) was assumed to be linear in the regression model. A log 

transformation for BMI, alcohol consumption, and physical activity was applied to these 

covariates; although not a necessary assumption, linear regression is more robust when the 

independent variables have an approximately normal distribution (13). To deal with 0 in 

alcohol consumption and physical activity data, a ln(x+1) transformation was applied (Table 

2).

Statistical analyses that apply to accompanying papers in this supplement

The analysis plan entailed computing Spearman correlations to describe bivariate 

associations between each biomarker and selected continuous variables. Bivariate 

associations between each biomarker and categorical variables were described with 

geometric means (or arithmetic means where appropriate) and 95% CI across the categories. 

The means were compared across the categories on the basis of Wald F tests (tests whether 

at least 1 of the means across the categories is significantly different from the others). 
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Geometric or arithmetic means were not presented if the minimum sample size of 42 was 

not reached (assumed average design effect of 1.4 multiplied by 30) (14).

At the outset, we identified 10 different covariates for 29 different responses (biomarkers) 

and decided to keep all variables in a full regression model regardless of statistical 

significance. Covariates were arranged into 2 sets or “chunks” of sociodemographic factors 

and lifestyle factors. We tested these covariates in a hierarchical, chunk-wise fashion such 

that each chunk or set of related variables was tested simultaneously (15, 16). The influence 

of each chunk was assessed by a Satterthwaite adjusted F chunk test, which tests whether at 

least 1 of the model coefficients for the set of variables in the chunk is significantly different 

from 0. Wald F test statistics were used to test whether any single coefficient was 

significantly different from 0, if the overall chunk test was statistically significant. In 

addition to simple linear regression (model 1), multiple regression models were considered 

for each biomarker: a multiple linear regression model with the sociodemographic variables 

(model 2), and a multiple linear regression model with both the sociodemographic and 

lifestyle variables in the regression (model 3). For urine biomarkers, urine creatinine 

concentration was added to model 3 (model 4). For fat-soluble nutrients, lipid-related factors 

were added to model 3 (model 4) or sun exposure factors were added to model 3 for 25OHD 

only (model 5). Simple linear regression was used to provide an estimate of the unadjusted 

beta coefficient and a sample coefficient of determination (R2). Assuming the model is not 

misspecified, confounding can be assessed by the change in estimate between the adjusted 

and unadjusted beta coefficients from these models (16). We assessed confounding in 

specific variables by noting the change in the beta coefficients from the simple linear 

regression (model 1) to a larger multiple linear regression model (models 2–5). The 

magnitude of change that constitutes confounding can vary by subject matter. In some 

situations, a relatively small change might be meaningful; whereas in other instances, a 

larger change might not be clinically meaningful. A rule of thumb is that any change in the 

beta coefficient greater than 10–20% may be considered confounding (16).

A factor that limited the number of a priori variables to consider was related to the available 

degrees of freedom (df). While thousands of people are sampled in any cycle of NHANES, 

the effective df available is based on the number of primary sampling units minus the 

number of strata (17). In NHANES this amounts to approximately 15 df per cycle. Many 

preliminary analytic decisions were made to ensure we had sufficient df to include all pre-

selected variables simultaneously in a full model for each of the 29 analytes. Because several 

analytes only had 1 cycle of data released, we limited ourselves to a maximum of 15 df. In 

addition, we decided at the outset to exclude the consideration of higher-order interactions. 

Unless an interaction is driven by a known biological phenomenon, a statistically significant 

interaction will be difficult to interpret and in a descriptive analysis, such as this one, most 

likely represents general lack of model fit (15).

Statistical analyses were carried out using SAS for Windows software version 9.2 (SAS 

Institute, Cary, NC) and SAS-callable SUDAAN (SUDAAN Release 10.0, 2008 RTI, 

Research Triangle Park, NC) to account for the unequal probability of inclusion, 

stratification, and clustering. SUDAAN offers Taylor series linearization to account for the 

effect of stratification and clustering on the variance estimates. The weights used depended 
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on whether the specimens tested constituted a full or a subsample of all the eligible 

participants examined at the MEC and how many survey periods were combined to produce 

the estimate (Table 1). P-values < 0.05 were considered statistically significant. Because 

SUDAAN v10.0 does not have a correlation procedure, Spearman’s correlations were 

computed as the slope of the regression of the standardized ranks for both variables. P-

values for the Spearman correlation were computed as the maximum P-value of the slope 

coefficient of x on y and y on x.

Statistical analyses specific to this paper

We used a row-labeled plot to illustrate the increase in R2 from model 2 (includes 

sociodemographic variables) to model 3 (includes both sociodemographic and lifestyle 

variables) for all 29 biomarkers. The arrows are sorted in ascending order based on the R2 

from model 2. Models 2 and 3 are nested and so the model with more covariates (model 3) 

will always have a larger R2 than the smaller model (model 2).

To illustrate how controlling for more covariates selectively affects various biomarkers, we 

plotted the change in the beta coefficient (multiplied by 100) between model 1 and model 3 

for age (for every 1 y increase), sex (females vs. males), and race-ethnicity (MA vs. NHW 

and NHB vs. NHW) for 20 of the 29 biomarkers using row-labeled plots. The arrow points 

in the direction of the change of the value of the beta coefficient from model 1 to model 3. 

Of the 29 biomarkers included in the analysis, 20 shared some critical properties that made 

them suitable for this comparison: (1) they are based on a natural log transformation 

facilitating interpretation and (2) they generalize to the adult population ≥20 y with no 

further restrictions. A beta coefficient of 0, suggests that a change in that covariate produces 

no change in the response. To provide information about broad patterns across the 

biomarkers for each of the covariates in models 3–4, a summary of the estimated adjusted 

percent changes is presented using the beta coefficients.

RESULTS

Among adults ≥20 y in the non-institutionalized, civilian US population in 2003–2006, 23% 

were ≥60 y, 52% were female, 72% were non-Hispanic white, 56% had more than a high 

school education, 43% were considered high income based on PIR, 29% had evidence of 

current smoking, 29% reported not having any alcohol consumption during the past year or 

ever, 54% reported taking dietary supplements, 33% were considered obese, and 32% 

reported no leisure time physical activities during the past 30 d that lasted more than 10 min 

(Table 3). As different biomarkers were analyzed in different NHANES survey periods 

and/or subsamples, we verified that this descriptive information was not qualitatively 

impacted by the set of NHANES weights used (see Supplemental Table 2).

It is interesting to note some patterns across the analytes when comparing the change in R2 

from model 2 to model 3 (Fig. 1). Urine phytoestrogens showed the smallest increase in R2 

after adding the lifestyle chunk; whereas both acrylamide and glycidamide showed the 

largest increases. Plasma homocysteine stood out as the analyte for which the 

sociodemographic variables explained most of the variability, yet with little added value 

from the lifestyle factors.
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To illustrate how controlling for more covariates affects beta coefficients for demographic 

variables, we looked at the changes in beta coefficients for twenty analytes that use a natural 

log transformation and allow simplified interpretation of values (Fig. 2). Consider serum 

folate and the beta coefficient for sex with males as the reference. The beta coefficient from 

model 1 is 0.129 (95% CI: 0.104 – 0.154), while the beta coefficient from model 3 is 0.057 

(95% CI: 0.031 – 0.083). Using the approximate interpretation, this suggests that females 

have approximately 12.9% (0.120 × 100) higher serum folate concentrations than males 

before controlling for covariates and 5.7% (0.057 × 100) after controlling for age, race-

ethnicity, PIR, education level, smoking, alcohol consumption, BMI, physical activity, and 

supplement use. The change in the beta coefficient for sex and serum folate from model 1 to 

model 3 reveals a 56% change in the beta coefficient, which may imply that at least 1 of the 

variables in model 3 or a combination of them may have confounded the unadjusted estimate 

of model 1. On the other hand, some of the biomarkers reveal a qualitative change in the 

interpretation of the beta coefficient when the value changes from negative to positive or 

vice versa. Consider sex and acrylamide as an example. The beta coefficient for sex (with 

males as the reference) changes from −0.112 (95% CI: −0.149 – −0.0743) in model 1 to 

0.0356 (95% CI: −0.0228 – 0.0940) in model 3. In other words, prior to any adjustment, 

acrylamide was approximately 11.2% lower in females compared to males. After adjusting, 

acrylamide was approximately 3.56% higher in females compared to males; in addition, the 

variable (sex) is no longer statistically significant after controlling for the remaining 

sociodemographic and lifestyle variables. On the other hand, for gylcidamide the unadjusted 

(model 1) and the sociodemographic adjusted (model 2) beta coefficient for sex are not 

significant, but once lifestyle factors are controlled for it reveals a statistically significant 

difference between females and males, such that females have approximately 8.7% higher 

levels of glycidamide than males. The reason for the sex gap cannot be explained by 

differences among the remaining variables, like smoking status, and may suggest other 

variables that have not been controlled for in the model such as genetics and other sex-

specific effects that modify acrylamide metabolism.

To provide information about broad patterns across the biomarkers for each of the covariates 

in the full regression model, a summary of the estimated adjusted changes is presented 

(Table 4). While there are a few exceptions, the statistically significant associations between 

the biomarkers and age, sex, or race-ethnicity remained after adjusting for all the pre-

selected covariates. In case of phytoestrogens, non-significant associations between age, sex 

or race-ethnicity became statistically significant or vice versa after adjusting for the pre-

selected variables. Among the sociodemographic factors, education level had the fewest 

statistically significant associations among the biomarkers (5/29); age on the other hand was 

statistically significant for 24 and race-ethnicity for 22 (NHB vs. NHW) and 18 (MA vs. 

NHW) of the 29 biomarkers. Among these significant associations, age was most often 

positively associated, while race (NHB vs. NHW) was generally negatively associated with 

the biomarkers (Fig. 2, Table 4). The exceptions for age included pyridoxal-5’-phosphate, 

carotenes, 25-hydroxyvitamin D, and acrylamide hemoglobin adduct; the exceptions for 

race-ethnicity (NHB vs. NHW) included total cobalamin, vitamin C, carotenes, 

xanthophylls, soluble transferrin receptor, and glycidamide hemoglobin adduct. Both levels 

of comparison for race-ethnicity, NHB vs. NHW and MA vs. NHW, were simultaneously 
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statistically significant for 15 biomarkers; for 8 of the biomarkers NHW had the highest 

concentrations, for 3 biomarkers (total cobalamin, vitamin C and xanthophyll) NHW had the 

lowest concentrations. The remaining 4 biomarkers had associations for each level in 

opposite directions. Among the lifestyle factors, physical activity had the fewest statistically 

significant associations among the biomarkers (12 of the 29); whereas, BMI was statistically 

significant for 20 and smoking status for 19 of the 29 biomarkers. Out of the 15 biomarkers 

for which both smoking and BMI were statistically significant, the association was in the 

same direction for 12 (exceptions: RBC folate, soluble transferrin receptor, and acrylamide 

hemoglobin adduct). Similarly, out of the 10 times both smoking and alcohol consumption 

were statistically significant, the direction of the association was in the same direction for 8 

(exceptions: pyridoxal-5’-phosphate and glycidamide hemoglobin adduct). The magnitude 

of the estimated change varied among the 16 statistically significant changes for supplement 

use; however, all the associations suggested increases in biomarker concentrations among 

supplement users, except for methylmalonic acid, total homocysteine, and acrylamide 

hemoglobin adduct. Supplement use was not significantly associated with any of the 

phytoestrogens and most fatty acids.

DISCUSSION

In developing a regression plan to assess the joint impact of 10 specific sociodemographic 

and lifestyle covariates for each of 29 biomarkers from NHANES 2003–2006 we tried to 

avoid some statistical practices that have been shown to capitalize on random variation such 

as repeated significance testing, data driven selection of optimal cut points for quantitative 

variables, automatic model selection approaches, and using the same data more than once to 

develop a regression model. Derksen and Keselman (18) showed through simulation, that the 

final model selected from stepwise selection included less than half of the actual number of 

real or true predictors; in addition, between 20–75% of the findings represented noise in the 

final model. Freedman (19) demonstrated through simulation and asymptotic theory that 

screening variables in a full regression model based on statistical significance followed by 

eliminating those that are not statistically significant could lead to models with high R2 

despite the fact that none of the covariates are truly related to the response. While the R2 

may not be the primary statistic of interest, the implication of an inflated R2 is a small mean 

square error leading to inflated test-statistics for the beta coefficients and hence P-values that 

are more likely to reject the null hypothesis of no association. Another practice that we 

chose to avoid in this data analysis was to use the response data to determine the form of a 

continuous covariate in a regression model. This practice has been associated with an 

inflation of type I error when preliminary tests for non-linearity are used (20) and can lead to 

exaggeration of effect sizes, and smaller P-values (21). Recognizing there is a penalty 

associated with data mining (22), we decided in advance how to spend the available df and 

to avoid further model refinement. There is always a tension between bias and simplicity 

when developing a model. But one of the primary problems with developing a regression 

model using an iterative approach is that by the act of repeated hypothesis testing and data 

driven model decisions, one fails to preserve the statistical properties and interpretation of 

beta coefficients and standard errors that underlie the frequentist methods so often used in 

empirical research (3, 15, 18–23). Additionally, estimates of the standard error from a given 
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model account for the sampling variability assuming the model is true. They do not account 

for the uncertainty associated with not knowing which model is true. Thus, by capitalizing 

on the random variation researchers may develop models that show more agreement with the 

sample than with data on the entire population, or any other sample from that population 

(24).

This problem in model building has long been recognized and stems from the fact that we 

use the same data twice. Chatfield (25) writes “It is indeed strange that we often admit 

model uncertainty by searching for the best model but then ignore this uncertainty by 

making inferences and predictions as if certain that the best fitting model is actually true.” 

The benefits of limiting the number of hypothesis tests by keeping a priori selected variables 

in a regression model despite statistical significance include: providing findings that are 

more likely to be reproducible, preserving the interpretation of the full model results, and 

keeping the interpretation consistent across a set of biomarkers without over-interpreting the 

results for any single biomarker.

A key factor in determining the accuracy of the estimate, both its bias and its variance, is 

how well confounding has been controlled for in the model (15). Because our model does 

not control for all variables that may be important and/or confound the observed 

relationship, one must recognize this as a limitation of our analyses and inferences. A more 

parsimonious model could be derived for each biomarker by eliminating the variables that 

were not statistically significant from each chunk. However, we were more concerned with 

minimizing the penalty of data mining, preserving interpretation of the model results, and 

limiting the number of false positive associations, so we chose to report the results of the full 

model.

While one of the primary advantages of limiting data driven decisions during the model 

building process is the preservation of the statistical properties of P-values and confidence 

levels, it does not solve the problems associated with model misspecification or error-in-

variable problems i.e., covariate measurement errors. There are many opportunities for 

model misspecification in our regression models. For example, the assumption of linearity 

between the continuous covariates and the biomarker may not be accurate; variables 

included in the model may be measured with error or may be suboptimal in other ways. For 

example, the dietary supplement use covariate does not specify which specific kinds of 

supplements are being used nor does it differentiate between persons who used supplements 

infrequently from persons who used them daily. Many important correlates of the individual 

biomarkers considered in our analyses were not included in our modeling approach, such as 

specific dietary intake variables. In addition, the type of strategy we employed is not 

immune from overfitting. The model could be specified, a priori, as too complex or prone to 

numerical instability by including too many covariates for the available df and/or including 

highly correlated covariates.

When analyzing data from observational studies, there are many legitimate reasons to 

explore and examine data in advance of creating a regression model; such as, error checking 

to confirm the integrity of the data, assessing the size of the sample and types of variables, 

checking for possible influential observations or the degree of missing data, or using 
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graphical methods to assess basic statistical assumptions (2). A data analysis plan could be 

developed having full access to all the variables except the outcome of interest with limited 

penalty (26). In addition, in some situations there may be ways to mitigate the impact of data 

driven decisions either by using methods that adjust for multiple comparisons, by adjusting 

the level of significance to account for preliminary testing, and/or by developing models that 

account for model uncertainty. However, developing regression models with complex survey 

data is challenging for many reasons, one of which is that many of the solutions to address 

some of the problems of model uncertainty have not been well-researched or implemented in 

commercially available statistical software in the context of complex survey data analysis. 

For example, a Bayesian solution to model uncertainty has been described by averaging 

across all the competing models and attaching weights of plausibility to each of the models 

and thereby incorporating a notion of model uncertainty (25), rather than identifying a single 

‘best’ model. Other solutions propose cross-validation, shrinkage, penalized maximum 

likelihood estimation and resampling methods (15, 22). Regression modeling in complex 

surveys can be approached from a super-population inference point of view (17), which can 

more easily be adapted to some of the proposed solutions to assess model uncertainty. 

However, the publicly released NHANES data sets do not necessarily provide enough 

information to account for the sampling design, nor is it obvious how to incorporate all the 

design aspects into a model including fixed and/or random effects. In addition, the problem 

of causality is difficult in observational studies without very careful consideration of the 

causal pathway between exposure and outcome. In order to reasonably establish cause and 

effect, statistical methods like propensity scores that try to approximate the design of a 

randomized clinical trial (26, 27) are better suited than traditional regression methods.

In an effort to compare the effects of a fixed set of covariates across all biomarkers presented 

in the Second National Report on Biochemical Indicators of Diet and Nutrition in the US 
Population (5), we chose to forfeit insight into the association between variables unique to 

each individual biomarker and rather chose an approach that was consistent across a set of 

biomarkers and limited the amount of data mining. The approach taken in these papers 

provide a natural way for other researchers to build upon our results by selecting additional 

variables for a specific biomarker and adding additional chunks, such as a health status 

chunk and/or a dietary intake chunk or the researcher may choose to use a different variable 

elimination strategy. In summary, while we do not claim that any of our final models are 

‘correct’, we have adhered to the scientific method and “rules of behavior” (28), focusing on 

the “feedback loop” (4) between theory and practice, to make decisions before fitting any 

regression models. Hence, the purpose of this set of papers is to provide an inductive 

foundation for researchers to build on these NHANES analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Increase in R2 from the multiple linear regression model with the sociodemographic 

variables (model 2) to the multiple linear regression model with the sociodemographic and 

lifestyle variables (model 3)

Sorted in ascending order based on model 2 R2 (%); arrows point in the direction of the 

increase from model 2 to model 3 R2; to simplify visual appearance, horizontal lines have 

been added.
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25OHD, 25-hydroxyvitamin D ; 4PA, 4-pyridoxic acid; B, whole blood; B-12, total 

cobalamin; BI, body iron; CAR, carotenes [sum of alpha-carotene, beta-carotene and cis- 

and trans-lycopene], DAZ, daidzein ; DMA, O-desmethylangolensin; EQU, equol; ETD, 

enterodiol; ETL, enterolactone; FER, ferritin; FOL, folate; GEN, genistein; HbAA, 

acrylamide hemoglobin adduct; HbGA, glycidamide hemoglobin adduct; MMA, 

methylmalonic acid; MUFA, sum of 6 monounsaturated fatty acids; P, plasma; PLP, 

pyridoxal-5’-phosphate; PUFA, sum of 11 polyunsaturated fatty acids; S, serum; SFA, sum 

of 6 saturated fatty acids; sTfR, soluble transferrin receptor; tFA, total fatty acids [sum of 24 

fatty acids]; tHcy, total homocysteine; U, urine; uI, urine iodine; VIA, retinol; VIC, ascorbic 

acid; VIE, alpha-tocopherol; XAN, xanthophylls [sum of lutein, zeaxanthin and beta-

cryptoxanthin].
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Figure 2. 
Relative change in beta coefficient (multiplied by 100) for sex, age, and race-ethnicity from 

the simple linear regression (model 1) to the multiple linear regression model with the 

sociodemographic and lifestyle variables (model 3)

A: non-Hispanic black vs. non-Hispanic white; B: Mexican American vs. non-Hispanic 

white; C: 1 y increase in age; D: females vs. males.

In each panel, beta × 100 (%) can be interpreted as the approximate percent change in the 

biomarker for a change in the respective covariate while holding any other variables in the 

model constant.

Sorted by class of biomarker (water-soluble, fat-soluble, phytoestrogens, iodine, hemoglobin 

adducts of acrylamide); arrows point in the direction of the change of the beta coefficient 

from model 1 to model 3; reference line at zero; to simplify visual appearance, horizontal 

lines have been added.

4PA, 4-pyridoxic acid; B, whole blood; B-12, total cobalamin; CAR, carotenes [sum of 

alpha-carotene, beta-carotene and cis- and trans-lycopene], DAZ, daidzein ; DMA, O-

desmethylangolensin; EQU, equol; ETD, enterodiol; ETL, enterolactone; FOL, folate; GEN, 

genistein; HbAA, acrylamide hemoglobin adduct; HbGA, glycidamide hemoglobin adduct; 
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MMA, methylmalonic acid; P, plasma; PLP, pyridoxal-5’-phosphate; S, serum; tHcy, total 

homocysteine; U, urine; uI, urine iodine; VIA, retinol; VIE, alpha-tocopherol; XAN, 

xanthophylls [sum of lutein, zeaxanthin and beta-cryptoxanthin].
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Table 1

Biomarkers of diet and nutrition assessed in the adult US population ≥20 y during all of part of NHANES 

2003–2006

Class Biomarkers1 (matrix2) Survey
cycle

Population
studied

Sample

Water-soluble FOL (S), FOL (RBC), B-12
(S), tHcy (P), VIC (S)

2003–2006 ≥20 y Full

MMA (P) 2003–2004 ≥20 y Full

PLP (S), 4PA (S) 2005–2006 ≥20 y Full

Fat-soluble VIA (S), VIE (S),
CAR (S), XAN (S)

2005–2006 ≥20 y Full

25OHD (S) 2003–2006 ≥20 y Full

SFA (P), MUFA (P),
PUFA (P), tFA (P)

2003–2004 ≥20 y Fasted subsample

Trace elements FER (S), sTfR (S), BI (S) 2003–2006 Women 20–49 y Full

uI (U) 2003–2006 ≥20 y 1/3 Subsample

Phytoestrogens GEN (U), DAZ (U), EQU (U),
DMA (U), ETD (U), ETL (U)

2003–2006 ≥20 y 1/3 Subsample

Acrylamide HbAA (B), HbGA (B) 2003–2004 ≥20 y Full

1
25OHD, 25-hydroxyvitamin D; 4PA, 4-pyridoxic acid; B-12, total cobalamin; BI, body iron; CAR, carotenes [sum of alpha-carotene, beta-

carotene and cis- and trans-lycopene], DAZ, daidzein; DMA, O-desmethylangolensin; EQU, equol; ETD, enterodiol; ETL, enterolactone; FER, 
ferritin; FOL, folate; GEN, genistein; HbAA, acrylamide hemoglobin adduct; HbGA, glycidamide hemoglobin adduct; MMA, methylmalonic acid; 
MUFA, sum of 6 monounsaturated fatty acids; PLP, pyridoxal-5’-phosphate; PUFA, sum of 11 polyunsaturated fatty acids; SFA, sum of 6 saturated 
fatty acids; sTfR, soluble transferrin receptor; tFA, total fatty acids [sum of 24 fatty acids]; tHcy, total homocysteine; uI, urine iodine; VIA, retinol; 
VIC, ascorbic acid; VIE, alpha-tocopherol; XAN, xanthophylls [sum of lutein, zeaxanthin and beta-cryptoxanthin]

2
B, whole blood; P, plasma; S, serum; U, urine
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Table 2

Mathematical forms of selected covariates for regression models

Chunk Variable Type Transformation

Sociodemographic Age, y Continuous None

Sex Categorical (2 levels) N/A1

Race-ethnicity Categorical (5 levels) N/A

Poverty income ratio Continuous None

Education Categorical (2 levels) N/A

Lifestyle Smoking status Categorical (2 levels) N/A

Alcohol consumption2drinks/d Continuous ln(x + 1)

Supplement use Categorical (2 levels) N/A

BMI (kg/m2) Continuous ln

Physical activity3MET-min/wk Continuous ln(x + 1)

1
N/A, not applicable

2
Alcohol consumption: calculated as average daily number of “standard” drinks [(quantity x frequency) / 365.25]; 1 drink ≈ 15 g ethanol

3
Physical activity: calculated as total metabolic equivalent task (MET)-min/wk from self-reported leisure time physical activities
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Table 3

Descriptive information for the adult US population ≥20 y by sociodemographic and lifestyle factors, 

NHANES 2003–2006

Factor Category Estimate1

Age, y 20–39 38.4

40–59 38.8

≥60 22.8

Sex Male 48

Female 52

Race-ethnicity Mexican-American 7.9

Non-Hispanic black 11.4

Non-Hispanic white 72

Other Hispanic 3.5

Other (including multiracial) 5.4

Education ≤High school 44.2

>High school 55.9

PIR2 Low 29.3

Middle 28

High 42.7

Smoking status3 No 71.2

Yes 28.9

Alcohol consumption4 No drinks 29.4

<1 (not 0) 56.8

1–<2 7.9

≥2 6.0

Supplement use5 No 45.9

Yes 54.1

BMI6 Underweight 1.8

Normal 31.6

Overweight 33.4

Obese 33.3

Physical activity7 None reported 32.1

0–<500 24.2

500–<1000 14.0

≥1000 29.7

1
Values represent weighted percentage using 4 y mobile examination center weights from NHANES 2003–2006

2
PIR, family poverty income ratio; low: 0–1.85; medium: >1.85–3.5; high: >3.5

3
“Smoker” defined by serum cotinine concentration >10 µg/L

4
Alcohol consumption: calculated as average daily number of “standard” drinks [(quantity x frequency) / 365.25]; 1 drink ≈ 15 g ethanol

5
“Supplement user” defined as participant who reported taking a dietary supplement within the past 30 d
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6
BMI (kg/m2) definitions: underweight: <18.5; normal weight: 18.5–>25; overweight: 25–<30; and obese: ≥30

7
Physical activity: calculated as total metabolic equivalent task (MET)-min/wk from self-reported leisure time physical activities
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